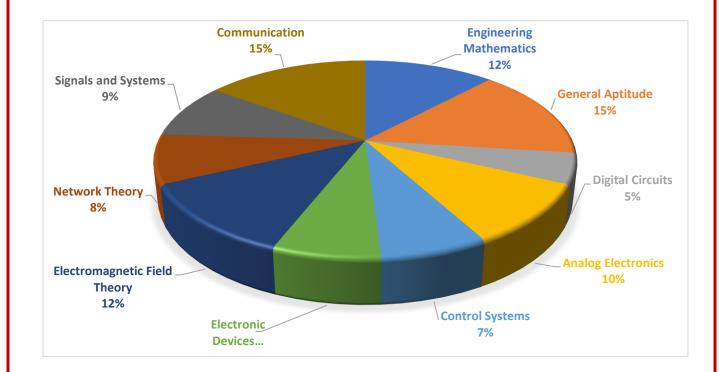
GATE 2023

Electronics & Communication Engineering

Questions & Solutions

5th Feb Afternoon Session

www.imsindia.com/gate

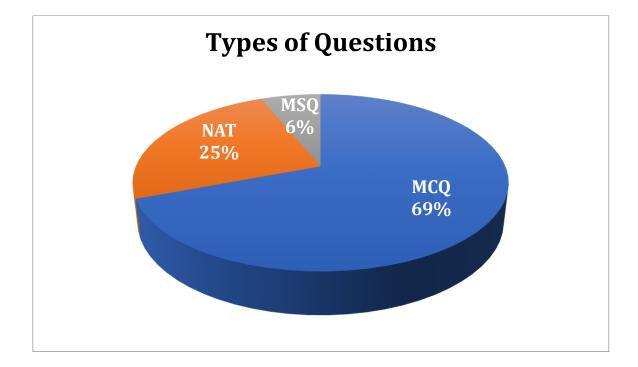


GATE 2023 Paper Analysis

Memory Based

GATE 2023Exam Solutions + Paper Analysis

Experience our GATE pedagogy FREE OF COST by signing up for our Zero Fee Program



EC

GATE 2023 Paper Analysis

Memory Based

EC

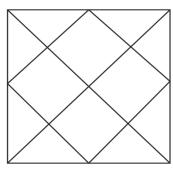
SECTION - A

GENERAL APTITUDE

- 1. I cannot support this proposal; my _____ will not permit it?
 - (A) Consensus

(B) Consent

(C) Conscious


(D) Conscience

MCQ

Correct Option: A

1 Mark

2. Count the number of rectangles?

(A) 10

(B) 8

(C) 9

(D) 12

MCQ

Correct Option: A

EC

3.		:: Parliament: Legislature	
	(A) Judiciary	(B) Governmental	
	(C) Executive	(D) Legal	MCQ
Correct Option: A			1 Mark
4.	In a class of 100 stu	dents	
	(i) there are 30 students who neither like romantic movie nor comedy movies.		
	(ii) number of students who like romantic movies is twice the number of students who lil		
	comedy moves and		
	(iii) the number of students who like both romantic movies and comedy moves is 20		
	How many students in the class like romantic moves?		
	(A) 60	(B) 30	MCQ
	(C) 40	(D) 20	McQ
Correct Option: A			2 Mark
5.	What is the smallest number with distinct digits whose digits add upto 45?		
	(A) 99999	(B) 123456789	
	(C) 23555789	(D) 123457869	MCQ
Corr	ect Option: B		2 Mark

EC

- 6. A $100 \text{ cm} \times 32 \text{ cm}$ rectangular sheet is folded 5 times. Each time the sheet is folded, the long Edge aligns with its opposite side. Eventually, the folded sheet is a rectangle of dimension $100 \text{ cm} \times 1 \text{ cm}$. The total number of creases visible when the sheet is unfolded is ______
 - (A) 32

(B) 63

(C) 31

(D) 5

Correct Option: C

2 Mark

MCQ

EC

SECTION - B

TECHNICAL

1.
$$G(s) = \frac{K}{s(1+sT_1)(1+sT_2)}$$

(A)
$$\frac{1}{\sqrt{T_1T_2}}$$

$$(B) \frac{1}{T_1 T_2}$$

(C)
$$\frac{1}{T_2\sqrt{T_1}}$$

(D)
$$\frac{1}{T_1\sqrt{T_2}}$$

MCQ

Correct Option: A

1 Mark

2.
$$\overline{E} = \hat{a}_x G_x \cos(\omega t - BZ) + \hat{a}G_y \cos(\omega t - Bz + \theta) V/m$$

Which of the following will give rise to LHEP?

(A)
$$C_1 x = 2$$
, $C_1 y = 1$, $\theta = \frac{3\pi}{4}$ (B) $C_1 x = 2$, $C_1 y = 1$, $\theta = \frac{\pi}{2}$

(B)
$$C_1 x = 2, C_1 y = 1, \theta = \frac{\pi}{2}$$

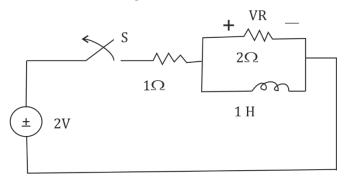
(C)
$$C_1 x = 1, C_1 y = 2, \theta = \frac{3\pi}{2}$$
 (D) $C_1 x = 1, C_y = 1, \theta = \frac{\pi}{4}$

(D)
$$C_1 x = 1, C_y = 1, \theta = \frac{\pi}{4}$$

MCQ

Correct Option: B

EC


- 3. In a semiconductor if the fermi level less to conduction band then the semiconductor is known as
 - (A) non-degenerated P-type
- (B) Degenerated P-type
- (C) Degenerated N-type
- (D) Non-Degenerated P-type

MCQ

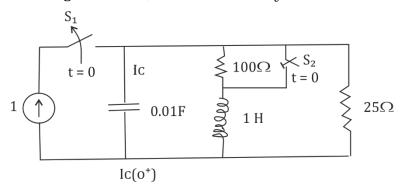
Correct Option: C

1 Mark

4. The maximum magnitude of V_R in _____ volts.

NAT

Answer: 4



EC

5. For the given circuit, find the value of i_c at $t = 0^+$

(A) 0.8

(B) 1

(C) - 1

(D) 0.2

MCQ

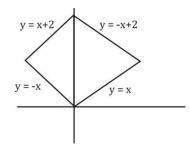
Correct Option: C

2 Mark

- 6. The value of line integral $\int_{P}^{Q} z^2 dx + 3y^2 dy + 2xz dz$ along straight line joining P(1, 2, 3) &
 - Q (2, 3, 1) is _____ (A) 24

(B) 29

(C) 20


(D) 12

MCQ

Correct Option: A

2 Mark

7. Find $\iint_R xy \ dx. dy$ over region R shown.

NAT

Answer: 0

EC

- 8. $x \Rightarrow n \times 1$ real column vector with length $\ell = \sqrt{x^T x}$ Trace of matrix P = ?
 - (A) $\ell^2/2$

(B) ℓ^2

(C) $\ell^2/4$

(D) ℓ

MCQ

Correct Option: B

1 Mark

- 9. The rate of increment of scalar field f(x, y, z) = xyz, in the direction of V(2, 1, 2) at point (0, 2, 1) is
 - (A) 1

(B) $\frac{2}{3}$

(C) $\frac{4}{3}$

(D) 4

MCQ

Correct Option: C

1 Mark

- 10. Counter integral $\oint_C \frac{Z+2}{z^2+2z+2} dz$ where the contour C is $\left\{C: \left|z+1-\frac{3}{2}j\right|=1\right\}$ taken in the Contour clockwise direction is
 - (A) $\pi(1-i)$

(B) $-\pi(1-j)$

 $(C) - \pi(1+j)$

(D) $\pi(1+j)$

MCQ

Correct Option: D

2 Mark

- 11. $V_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, $V_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$ be a 2 vectors $V_1 = \infty V_2 +$ e, value of \bigcirc for which mm length of error e.
 - (A) $\frac{-2}{7}$

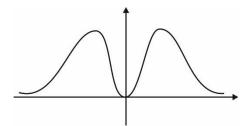
(B) $\frac{7}{2}$

(C) $\frac{-7}{2}$

(D) $\frac{2}{7}$

MCQ

Correct Option: D



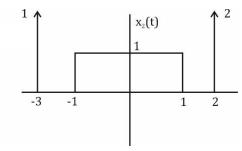
EC

12. Which of the following represents the given plot?

(A) $x.2^{-x}$

(B) $x^2 2^{-|x|}$

(C) $|x|.2^{-x}$


(D) $x.2^{-|x|}$

MCQ

Correct Option: B

1 Mark

13. $x_1(t) = u(t+1.5) - u(t-1.5)$

$$y(t) = x_1(t) * x_2(t)$$

Find the value of $\int_{-\infty}^{\infty} y(t)dt =$ _____

NAT

Answer: 15

2 Mark

14. The Fourier Transform of signal x (t)= e^{-t^2} is _____.

(A) $\sqrt{\pi}e^{-\frac{\omega^2}{4}}$

(B) $\sqrt{\pi}e^{-\frac{\omega^2}{2}}$

(C) $\sqrt{\pi}e^{-\frac{\omega^2}{8}}$

(D) $\sqrt{\pi}e^{+\frac{\omega^2}{4}}$

MCQ

Correct Option: A

1 Mark

GATE 2023
Exam Solutions + Paper Analysis

Experience our GATE pedagogy FREE OF COST by signing up for our Zero Fee Program

EC

- 15. Consider a narrow band signal propagating in lossless dielectric medium ($\epsilon_r = 4$, $\mu_r = 1$) with phase velocity V_p and group V_g which of the ______.
 - (A) $V_p < c$, $V_g > c$

(B) $V_p > c$, $V_g < c$

(C) $V_p < c$, $V_g < c$

(D) $V_p > c$, $V_g > c$

MCQ

Correct Option: A

2 Mark

16. If input x(n)having DTFT X($e^{1-\Omega}$) = $1-e^{-j-\Omega}+2e^{-3i\Omega}$ be passed through as LTI system of frequency response $H(e^{i\Omega})=1-1/2e^{-2i\Omega}$

The output y(n) of the system.

(A)
$$\delta(n) - \delta(n-1) - 0.5\delta(n-2) + 2.5\delta(n-3) - \delta(n-5)$$

(B)
$$\delta(n) + \delta(n-1) - 0.5\delta(n-2) - 2.5\delta(n-3) + \delta(n-5)$$

(C)
$$\delta(n) - \delta(n-1) - 0.5\delta(n-2) - 2.5\delta(n-3) + \delta(n-5)$$

(D)
$$\delta(n) + \delta(n-1) - 0.5\delta(n-2) + 2.5\delta(n-3) + \delta(n-5)$$

MCQ

Correct Option: A

2 Mark

- 17. Let m (t) be a bandlimited signal with bandwidth B and energy E. Let ω °=10B, the energy of Signal m(t)cos ω °t.
 - (A) E/4

(B) E

(C) 2E

(D) E/2

MCQ

Correct Option: A

EC

18. Match the follow:

Signal Types

- 1. Continuous and aperiodic
- 2. Continuous and Periodic
- 3. Discrete and aperiodic
- 4. Discrete and Periodic
- (A) 1-a, 2-b, 3-c, 4-d
- (C) 1-a, 2-c, 3-b, 4-d

Spectral characteristics

- a. Continuous and aperiodic
- b. Continuous and Periodic
- c. Discrete and aperiodic
- d. Discrete and Periodic
- (B) 1-a, 2-c, 3-d, 4-b
- (D) 1-d, 2-b, 3-c, 4-a

MCQ

Correct Option: C

2 Mark

- 19. $Y(t) = x(e^t)$
 - (A) Causal & TV

(B) NC & TV

(C) NC & TIV

(D) C & TIV

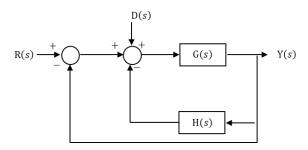
MCQ

Correct Option: B

1 Mark

20. In external semiconductor the hole concentration given by 1.5 n_i , where n is intrinsic carrier concentration of $1 \times 10^{10} \text{cm}^{2}$. The ratio of electron to hole mobility for equal hole and electron drift current density is given as _____.

Answer: 2.25



EC

21. R(s) and P(s) are two inputs

The output y(s) is expressed as $Y(s) = G_1(s) R(s) + G_2(s) D(s) G_1(s)$ and $G_2(s)$ are given by

NAT

Correct Option: *

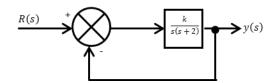
1 Mark

22. OLTF a(s) H(s) = $\frac{k}{s(1+sT_1)(1+sT_2)}$ K, $T_1T_2 > 0$ phase crossover frequency?

(A)
$$\frac{1}{T_2\sqrt{T_1}}$$

(B)
$$\frac{1}{T_1 T_2}$$

(C)
$$\frac{1}{T_1\sqrt{T_2}}$$


(D)
$$\frac{1}{\sqrt{T_{1T_2}}}$$

Correct Option: D

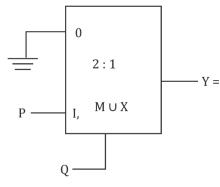
EC

23. The steady state error due to ramp Input R(s) = $\frac{\alpha}{s^2}$ is

(A) $\frac{\alpha}{4k}$

(B) $\frac{\alpha}{k}$

(C) $\frac{\alpha}{2k}$


(D) $\frac{2^{\alpha}}{k}$

Correct Option: D

2 Mark

MCQ

24. Find the output of the following MUX?

 $(A) \quad y = P + Q$

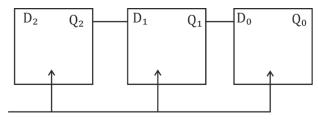
(B) $y = \overline{P}Q$

(C) $\overline{P} + Q$

(D) PQ

MCQ

Correct Option: D



EC

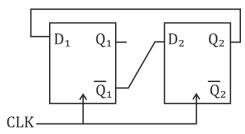
25. Find the throughput and latency (nano sec) of the following circuit?

fclk = 1GHZ

(A) 333.3, 1

(B) 33.3, 3

(C) 2000, 3


(D) 1000, 3

MCQ

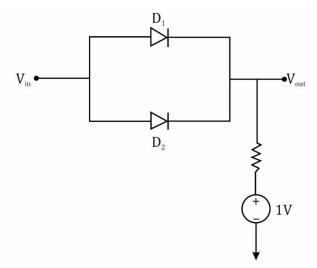
Correct Option: D

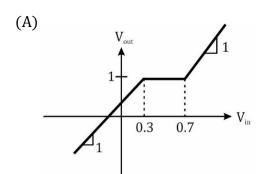
2 Mark

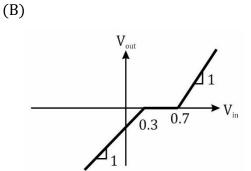
26. In the given sequence circuit initial states are $Q_1=1$, $Q_2=0$. For circuit frequency of 1 MHz; frequency of Q_2 (in kHz).

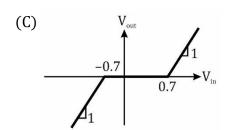
NAT

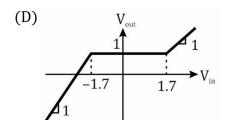
Answer: 250








EC


27. D_1 and D_2 – Silicon diode condition voltage = 0.7V transfer characteristics is

MCQ

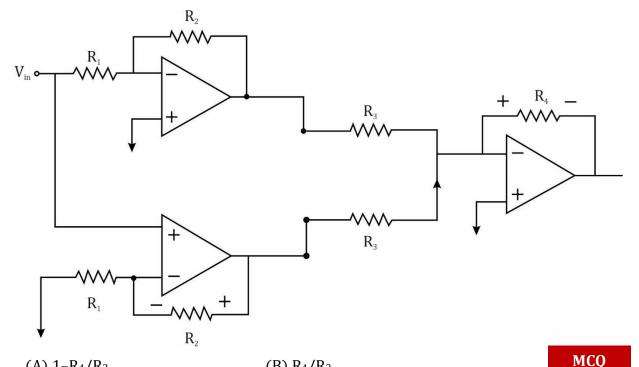
Correct Option: A

2 Mark

GATE 2023

Exam Solutions + Paper Analysis

Experience our GATE pedagogy FREE OF COST by signing up for our Zero Fee Program



EC

For the given circuit, calculate $\frac{V_{out}}{V_{in}}$ 28.

(A) $1-R_4/R_3$

(B) R_4/R_3

 $(C) - R_4 / R_3$

(D) $1+R_4/R_3$

Correct Option: C 2 Mark

GATE 2023 Exam Solutions + Paper Analysis

Experience our GATE pedagogy FREE OF COST by signing up for our Zero Fee Program

EC

29. Let $m(t) \rightarrow BW = B$

Energy = E

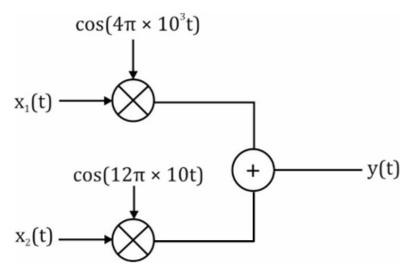
Assuming $\omega_0 = 10B$

The energy in the signal m(t).cos $\omega_0 t$ is

(A) E

(B) $\frac{E}{3}$

MCQ


(C) 2E

(D) $\frac{E}{2}$

Correct Option: D

1 Mark

30. Let $x_1(t)$ and $x_2(t)$ be two band limited signals having bandwidth $B=4\pi\times 10^3$ rad/s each. In the figure below, the Nyquist sampling frequency in rad/s, required to sample y(t) is

MCQ

(A) $8\pi \times 10^3$

(B) $20\pi \times 10^3$

(C) $40\pi \times 10^3$

(D) $32\pi \times 10^3$

Correct Option: D

EC

31. Fm signal

$$x(t) = A \cos \left[\omega_{c} t + kf \int_{-\infty}^{t} m(\lambda) d\lambda \right]$$

m(t) = msy signal of BW = W = Fm

It is passed through a Nm linear system $y(t) = 2x(t) + 5([x(t)]^2)$ BW of Fm = B_T

$$x(t)$$
 MLS $y(t) = 2x(t) + 5[x(t)]^2$

The minimum value ω_c required to recover x(t) from y(t)

(A) $\frac{5}{2}$ B_T

(B) $\frac{3}{2}$ B_T

MCQ

(C) $2B_T + W$

(D) $B_T + W$

Correct Option: *

2 Mark

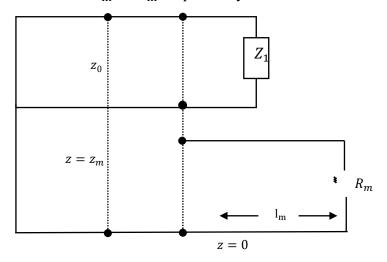
The electric field of a plane electromagnetic wave is 32.

 $E=a_xC_{\frac{1}{v}}\,\text{COS}\,(\omega t-B_z)+ay\,C_{1y}\,\,\text{COS}(\omega t-\beta z+\theta)\,v/\text{m.}$ which of the following

combinations (s) will give rise to a left handed elliptically polarized (LHEP) wave?

- (A) $C_{1x} = 1, C_{1y} = 2, \theta = \frac{3\pi}{2}$ (B) $C_{1x} = 2, C_{1y} = 1, \theta = \frac{\pi}{2}$

MCQ


- (C) $C_{1x} = 2$, $C_{1y} = 1$, $\theta = \frac{3\pi}{4}$ (D) $C_{1x} = 1$, $C_{1y} = 1$, $\theta = \frac{\pi}{4}$

Correct Option: *

EC

33. The standing wave ratio on a 50Ω lossless transmission line transmitted in an unknown ad impedance is found to be 2.0. The distance between successive voltage minima is 30 cm and the first minimum is located at 10 cm from the load. Z can be replaced by an equivalent, length I_m and terminating resistance R_m of the same line. The value of R_m and I_m respectively are

NAT

Correct Option: *

