GATE 2023 Instrumentation Engineering

Questions & Solutions

www.imsindia.com/gate

Follow | Subscribe | Like us on 👩 🖸 👔

IN

SECTION - A

GENERAL APTITUDE

- 1. Residency is a famous housing complex wit many well-established individuals among its residents. A recent survey conducted among the residents of the complex revealed that all of those residents who are well established in their respective fields happen to the academicians. The survey also revealed that most of these academicians are authors of some best-selling books. Based only on the information provided above, which one of the following statements can be logically inferred with certainty?
 - (A) Some authors of best-selling books are residents of the complex who are wellestablished in their fields.
 - (B) All academicians residing in the complex are well establishing in their fields.
 - (C) Some residents of the complex who are well established in their fields are also authors or some best-selling books .
 - (D) Some academicians residing in the complex are well established in their fields.

			13.		
	(A) at	(B) in	MCQ		
	(C) between	(D) through			
orr	ect Option: C		1 Mark		
3.	Disagree : Protest : : Agree :				
	(A) Pretext	(B) Refuse	МСО		
	(C) Refute	(D) Recommend			
orr	ect Ontion: D		4 10		

Answ	ver: 2		1 Mark
9.	Number of times Nyquist plot o	$f G(s)H(s) = \frac{(s-1)(s-2)}{2(s+1)(s+2)}$, encircles th	e origin is
			NAT
Answ	er: -2		1 Mark
10	$\lim_{n \to \infty} \left[\frac{1}{n} \right]$		
10.	$\sum_{x \to 0} \left[x \sin \left(\frac{-}{x} \right) \right]$	(D) 1	MCQ
	(A) does not exist (C)	(B) 1	
Corre	ect Option: C		1 Mark
11.	$\ddot{x} = -k\dot{x}, x(0) = 1, \dot{x}(0) = 0, the$	en the value of x(t) will be	
	(A) $x(t)=2e^{-kt}-kt-1$	(B) $x(t)=1$	MCQ
	(C) $x(t) = 2e^{-kt} + 2kt - 1$	(D) $x(t) = 2e^{-kt}$	
Corre	ct Option: B		2 Mark

Exam Solutions + Paper Analysis

15. For the given function, NAT $g(x) = \max \{ (x - 2)^2, -2x + 7 \}; x \in (-\infty, \infty)$ then the minimum value of g(x) = _____ Answer: 1 1 Mark 16. $f(z) = j \frac{1-2}{1+2} f^{-1}(2)$ maps real axis to (A) Unit circle with center not at origin (B) Real Axis MCO (C) Imaginary Axis (D) Unit circle with center at origin **Correct Option: D** 1 Mark 17. $h(t) = \delta(t) + 0.5 \delta(t-4)$ $x(t) = \cos\left(\frac{7\pi}{4}t\right) \text{ find } y(t)$ _____ (A) 0.5 $\sin\left(\frac{7\pi}{4}t\right)$ (B) $1.5 \sin(\frac{7\pi}{4}t)$ MCO (C) 0.5 $\cos\left(\frac{7\pi}{4}t\right)$ (D) $1.5 \cos(\frac{7\pi}{4}t)$ **Correct Option: C** 2 Mark Experience our GATE pedagogy FREE OF COST by signing up for our Zero Fee Program **GATE 2023** 🜔 Watch Now **Enroll Now**

18. If time period of x(t) is 1	.00 sec, then Time period of $y(t) = x$:(4t) will be	
sec.		NAT	
Answer: 25		1 Mark	
19. $\frac{y(s)}{x(s)} = \frac{s-\pi}{s+\pi}$ steady state of	butput $y(t) = \sin \pi t$ input $x(t) = ?$		
(A) $\cos\left(\pi t + \frac{\pi}{4}\right)$	(B) $\sin\left(\pi t + \frac{\pi}{2}\right)$	МСQ	
(C) $\sin\left(\pi t - \frac{\pi}{2}\right)$	(D) $\sin(\pi t)$		
< 2)			_
Correct Option: C		2 Mark	
Answer: -3		2 Mark	
GATE 2023		Experience our GATE pedagogy GATE	
Solutions + Paper Analysis		by signing up for our Zero Fee Program	nroll

Exam Solutions + Paper Analysis

IN

23. Match the following. 1) x ⊕ xP)1 2) $x \oplus \overline{x}Q$ 0 3) $x \oplus 0R$ \bar{x} 4) $x \oplus 1S$ x MCQ (A) 1-Q, 2-P, 3-S, 4-R (B) 1-Q, 2-S, 3-P, 4-R (C) 1-R, 2-S, 3-P, 4-Q (D) 1-Q, 2-S, 3-R, 4-P **Correct Option: A** 1 Mark 24. The Boolean function, F (w, x, y, z) = $\sum m (4, 5, 10, 11, 12, 13, 14, 15)$ can be simplified to MCQ (A) $x\overline{y} + wy$ (B) $wx + \overline{w}x\overline{y} + w\overline{x}y$ (C) wx + wy + $x\overline{y}$ (D) $\overline{x}y + \overline{w}\overline{y}$ **Correct Option: A** 1 Mark 25. Initially A = B = C = 1, when the circuit is turned-ON. If the delays of AND, OR & NOT gates are 10ns, 10ns & 5ns respectively. If the frequency of steady state oscillations of the output y is MHz. NAT B Y A٠ Answer: 20 2 Mark Experience our GATE pedagogy FREE OF COST **GATE 2023** Watch Now

Enroll Now

by signing up for our Zero Fee Program

IN

26. The value of V_0 is _____. $\overrightarrow{3R}$ $\overrightarrow{3R}$ $\overrightarrow{V_0}$ $\overrightarrow{V_0}$ \overrightarrow{V} \overrightarrow

27. Figure below shows a feedback amplifier constructed using an nMOS transistor. Assume that $\mu_n C_{OX} = 1 \text{ mA/V}^2$, thus hold voltage $V_T = 1 \text{ V}$ and w/L = 2. The bias voltage at the drain terminal is 4V. The capacitors C^{∞} offer zero impedance once at signal frequency. The ratio V_{out}/V_{in} is _____.

28. DC shunt generator rotor is rotating in clockwise AV no load voltage in 200 V. If the rotation of rotor is reversed then what will be the terminal voltage.

35. In the circuit shown below, the initial binary content of shift register A is 1101 and that of shift register B is 1010. The shift register are +ve edge triggered, and gates have no delay.

When the shift control is high, what will be the binary content of the shift registers A and B after 4 clock pulses?

